决策树

Decision Tree

Posted by YangLong on July 20, 2017

Decision Tree 决策树

Refrence

https://blog.csdn.net/huanghui147258369/article/details/53689068
http://ml.apachecn.org/mlia/design-tree/

Theory

分类树(决策树)是一种十分常用的分类方法。他是一种监管学习,所谓监管学习就是给定一堆样本,每个样本都有一组属性和一个类别,这些类别是事先确定的,那么通过学习得到一个分类器,这个分类器能够对新出现的对象给出正确的分类。

ID3 算法

ID3算法是一种贪心算法,用来构造决策树。ID3算法起源于概念学习系统(CLS),以信息熵的下降速度为选取测试属性的标准,即在每个节点选取还尚未被用来划分的具有最高信息增益的属性作为划分标准,然后继续这个过程,直到生成的决策树能完美分类训练样例。

熵(entropy):熵指的是体系的混乱的程度,在不同的学科中也有引申出的更为具体的定义,是各领域十分重要的参量。
信息论(information theory)中的熵(香农熵):是一种信息的度量方式,表示信息的混乱程度,也就是说:信息越有序,信息熵越低。例如:火柴有序放在火柴盒里,熵值很低,相反,熵值很高。
信息增益(information gain):在划分数据集前后信息发生的变化称为信息增益。

信息熵

假定当前样本集合D中第k类样本所占的比例为pk(k=1,2….,|y|),可以用属于此类别元素的数量除以训练元组元素总数量作为估计,则D的信息熵为:

  • Ent(D)的值越小,则D的纯度越高。
  • 熵的实际意义表示是D中元组的类标号所需要的平均信息量。

信息增益

假定离散属性a有V个可能的取值{a1,a2,….,av},若使用a对样本D进行划分,则会产生V个分支节点。其中第V个节点上取值为$a^v$的样本,记$D^v$。则a对D划分的期望增益为:

故属性a对样本D进行划分所获得的“信息增益”(information gain):

  • 信息增益越大意味着使用属性a来进行划分所获得的“纯度提升越大”

C4.5算法

C4.5算法是由Ross Quinlan开发的用于产生决策树的算法。该算法是对Ross Quinlan之前开发的ID3算法的一个扩展。C4.5算法产生的决策树可以被用作分类目的,因此该算法也可以用于统计分类。

ID3选择属性用的是子树的信息增益,这里可以用很多方法来定义信息,ID3使用的是熵(entropy, 熵是一种不纯度度量准则),也就是熵的变化值,而C4.5用的是信息增益率。

C4.5算法首先定义了“分裂信息”,其定义可以表示成:

则增益率为:

其中,IV(a)称作属性a的固有值。属性a的可能取值数目越多,则IV(a)的值越大。因此增益率对取值数目较少的属性有所偏好。

CART 算法

在ID3算法中我们使用了信息增益来选择特征,信息增益大的优先选择。在C4.5算法中,采用了信息增益比来选择特征,以减少信息增益容易选择特征值多的特征的问题。但是无论是ID3还是C4.5,都是基于信息论的熵模型的,这里面会涉及大量的对数运算。能不能简化模型同时也不至于完全丢失熵模型的优点呢?有!CART分类树算法使用基尼系数来代替信息增益比,基尼系数代表了模型的不纯度,基尼系数越小,则不纯度越低,特征越好。这和信息增益(比)是相反的。

数据集D的纯度可以使用基尼系数来度量:

Gini(D)越小。则数据集D的纯度越高。 则属性a的基尼系数为

Solution

基本步骤

收集数据:可以使用任何方法。
准备数据:树构造算法 (这里使用的是ID3算法,只适用于标称型数据,这就是为什么数值型数据必须离散化。 还有其他的树构造算法,比如CART)
分析数据:可以使用任何方法,构造树完成之后,我们应该检查图形是否符合预期。
训练算法:构造树的数据结构。
测试算法:使用训练好的树计算错误率。
使用算法:此步骤可以适用于任何监督学习任务,而使用决策树可以更好地理解数据的内在含义。

特点

优点:计算复杂度不高,输出结果易于理解,数据有缺失也能跑,可以处理不相关特征。
缺点:容易过拟合。
适用数据类型:数值型和标称型。

区分鱼类和非鱼类

根据以下 2 个特征,将动物分成两类:鱼类和非鱼类。 特征:

  1. 不浮出水面是否可以生存
  2. 是否有脚蹼
  • 收集数据:可以使用任何方法,我们利用 createDataSet() 函数输入数据
def createDataSet():
    dataSet = [[1, 1, 'yes'],
            [1, 1, 'yes'],
            [1, 0, 'no'],
            [0, 1, 'no'],
            [0, 1, 'no']]
    labels = ['no surfacing', 'flippers']
    return dataSet, labels
  • 准备数据:树构造算法 此处,由于我们输入的数据本身就是离散化数据,所以这一步就省略了。

  • 分析数据:可以使用任何方法,构造树完成之后,我们可以将树画出来。

计算给定数据集的香农熵的函数

def calcShannonEnt(dataSet):
    # 求list的长度,表示计算参与训练的数据量
    numEntries = len(dataSet)
    # 计算分类标签label出现的次数
    labelCounts = {}
    # the the number of unique elements and their occurrence
    for featVec in dataSet:
        # 将当前实例的标签存储,即每一行数据的最后一个数据代表的是标签
        currentLabel = featVec[-1]
        # 为所有可能的分类创建字典,如果当前的键值不存在,则扩展字典并将当前键值加入字典。每个键值都记录了当前类别出现的次数。
        if currentLabel not in labelCounts.keys():
            labelCounts[currentLabel] = 0
        labelCounts[currentLabel] += 1

    # 对于 label 标签的占比,求出 label 标签的香农熵
    shannonEnt = 0.0
    for key in labelCounts:
        # 使用所有类标签的发生频率计算类别出现的概率。
        prob = float(labelCounts[key])/numEntries
        # 计算香农熵,以 2 为底求对数
        shannonEnt -= prob * log(prob, 2)
    return shannonEnt

按照给定特征划分数据集 将指定特征的特征值等于 value 的行剩下列作为子数据集。

def splitDataSet(dataSet, index, value):
    """splitDataSet(通过遍历dataSet数据集,求出index对应的colnum列的值为value的行)
        就是依据index列进行分类,如果index列的数据等于 value的时候,就要将 index 划分到我们创建的新的数据集中
    Args:
        dataSet 数据集                 待划分的数据集
        index 表示每一行的index列        划分数据集的特征
        value 表示index列对应的value值   需要返回的特征的值。
    Returns:
        index列为value的数据集【该数据集需要排除index列】
    """
    retDataSet = []
    for featVec in dataSet: 
        # index列为value的数据集【该数据集需要排除index列】
        # 判断index列的值是否为value
        if featVec[index] == value:
            # chop out index used for splitting
            # [:index]表示前index行,即若 index 为2,就是取 featVec 的前 index 行
            reducedFeatVec = featVec[:index]
            '''
            请百度查询一下: extend和append的区别
            music_media.append(object) 向列表中添加一个对象object
            music_media.extend(sequence) 把一个序列seq的内容添加到列表中 (跟 += 在list运用类似, music_media += sequence)
            1、使用append的时候,是将object看作一个对象,整体打包添加到music_media对象中。
            2、使用extend的时候,是将sequence看作一个序列,将这个序列和music_media序列合并,并放在其后面。
            music_media = []
            music_media.extend([1,2,3])
            print music_media
            #结果:
            #[1, 2, 3]
            
            music_media.append([4,5,6])
            print music_media
            #结果:
            #[1, 2, 3, [4, 5, 6]]
            
            music_media.extend([7,8,9])
            print music_media
            #结果:
            #[1, 2, 3, [4, 5, 6], 7, 8, 9]
            '''
            reducedFeatVec.extend(featVec[index+1:])
            # [index+1:]表示从跳过 index 的 index+1行,取接下来的数据
            # 收集结果值 index列为value的行【该行需要排除index列】
            retDataSet.append(reducedFeatVec)
    return retDataSet

选择最好的数据集划分方式

def chooseBestFeatureToSplit(dataSet):
    """chooseBestFeatureToSplit(选择最好的特征)

    Args:
        dataSet 数据集
    Returns:
        bestFeature 最优的特征列
    """
    # 求第一行有多少列的 Feature, 最后一列是label列嘛
    numFeatures = len(dataSet[0]) - 1
    # 数据集的原始信息熵
    baseEntropy = calcShannonEnt(dataSet)
    # 最优的信息增益值, 和最优的Featurn编号
    bestInfoGain, bestFeature = 0.0, -1
    # iterate over all the features
    for i in range(numFeatures):
        # create a list of all the examples of this feature
        # 获取对应的feature下的所有数据
        featList = [example[i] for example in dataSet]
        # get a set of unique values
        # 获取剔重后的集合,使用set对list数据进行去重
        uniqueVals = set(featList)
        # 创建一个临时的信息熵
        newEntropy = 0.0
        # 遍历某一列的value集合,计算该列的信息熵 
        # 遍历当前特征中的所有唯一属性值,对每个唯一属性值划分一次数据集,计算数据集的新熵值,并对所有唯一特征值得到的熵求和。
        for value in uniqueVals:
            subDataSet = splitDataSet(dataSet, i, value)
            # 计算概率
            prob = len(subDataSet)/float(len(dataSet))
            # 计算信息熵
            newEntropy += prob * calcShannonEnt(subDataSet)
        # gain[信息增益]: 划分数据集前后的信息变化, 获取信息熵最大的值
        # 信息增益是熵的减少或者是数据无序度的减少。最后,比较所有特征中的信息增益,返回最好特征划分的索引值。
        infoGain = baseEntropy - newEntropy
        print 'infoGain=', infoGain, 'bestFeature=', i, baseEntropy, newEntropy
        if (infoGain > bestInfoGain):
            bestInfoGain = infoGain
            bestFeature = i
    return bestFeature
问:上面的 newEntropy 为什么是根据子集计算的呢?
答:因为我们在根据一个特征计算香农熵的时候,该特征的分类值是相同,这个特征这个分类的香农熵为 0;
这就是为什么计算新的香农熵的时候使用的是子集。
  • 训练算法:构造树的数据结构

创建树的函数代码如下:

def createTree(dataSet, labels):
    classList = [example[-1] for example in dataSet]
    # 如果数据集的最后一列的第一个值出现的次数=整个集合的数量,也就说只有一个类别,就只直接返回结果就行
    # 第一个停止条件:所有的类标签完全相同,则直接返回该类标签。
    # count() 函数是统计括号中的值在list中出现的次数
    if classList.count(classList[0]) == len(classList):
        return classList[0]
    # 如果数据集只有1列,那么最初出现label次数最多的一类,作为结果
    # 第二个停止条件:使用完了所有特征,仍然不能将数据集划分成仅包含唯一类别的分组。
    if len(dataSet[0]) == 1:
        return majorityCnt(classList)

    # 选择最优的列,得到最优列对应的label含义
    bestFeat = chooseBestFeatureToSplit(dataSet)
    # 获取label的名称
    bestFeatLabel = labels[bestFeat]
    # 初始化myTree
    myTree = {bestFeatLabel: {}}
    # 注:labels列表是可变对象,在PYTHON函数中作为参数时传址引用,能够被全局修改
    # 所以这行代码导致函数外的同名变量被删除了元素,造成例句无法执行,提示'no surfacing' is not in list
    del(labels[bestFeat])
    # 取出最优列,然后它的branch做分类
    featValues = [example[bestFeat] for example in dataSet]
    uniqueVals = set(featValues)
    for value in uniqueVals:
        # 求出剩余的标签label
        subLabels = labels[:]
        # 遍历当前选择特征包含的所有属性值,在每个数据集划分上递归调用函数createTree()
        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)
        # print 'myTree', value, myTree
    return myTree
  • 测试算法:使用决策树执行分类
def classify(inputTree, featLabels, testVec):
    """classify(给输入的节点,进行分类)

    Args:
        inputTree  决策树模型
        featLabels Feature标签对应的名称
        testVec    测试输入的数据
    Returns:
        classLabel 分类的结果值,需要映射label才能知道名称
    """
    # 获取tree的根节点对于的key值
    firstStr = inputTree.keys()[0]
    # 通过key得到根节点对应的value
    secondDict = inputTree[firstStr]
    # 判断根节点名称获取根节点在label中的先后顺序,这样就知道输入的testVec怎么开始对照树来做分类
    featIndex = featLabels.index(firstStr)
    # 测试数据,找到根节点对应的label位置,也就知道从输入的数据的第几位来开始分类
    key = testVec[featIndex]
    valueOfFeat = secondDict[key]
    print '+++', firstStr, 'xxx', secondDict, '---', key, '>>>', valueOfFeat
    # 判断分枝是否结束: 判断valueOfFeat是否是dict类型
    if isinstance(valueOfFeat, dict):
        classLabel = classify(valueOfFeat, featLabels, testVec)
    else:
        classLabel = valueOfFeat
    return classLabel

使用算法:此步骤可以适用于任何监督学习任务,而使用决策树可以更好地理解数据的内在含义。

预测隐形眼镜类型

隐形眼镜类型包括硬材质、软材质以及不适合佩戴隐形眼镜。我们需要使用决策树预测患者需要佩戴的隐形眼镜类型

  1. 收集数据: 提供的文本文件。
  2. 解析数据: 解析 tab 键分隔的数据行
  3. 分析数据: 快速检查数据,确保正确地解析数据内容,使用 createPlot() 函数绘制最终的树形图。
  4. 训练算法: 使用 createTree() 函数。
  5. 测试算法: 编写测试函数验证决策树可以正确分类给定的数据实例。
  6. 使用算法: 存储树的数据结构,以便下次使用时无需重新构造树。
  • 1, 收集数据:提供的文本文件

文本文件数据格式如下:

young	myope	no	reduced	no lenses
pre	myope	no	reduced	no lenses
presbyopic	myope	no	reduced	no lenses
  • 2 , 解析数据:解析 tab 键分隔的数据行
lecses = [inst.strip().split('\t') for inst in fr.readlines()]
lensesLabels = ['age', 'prescript', 'astigmatic', 'tearRate']
  • 3, 分析数据:快速检查数据,确保正确地解析数据内容,使用 createPlot() 函数绘制最终的树形图。
>>> treePlotter.createPlot(lensesTree)
  • 4, 训练算法:使用 createTree() 函数
>>> lensesTree = trees.createTree(lenses, lensesLabels)
>>> lensesTree
{'tearRate': {'reduced': 'no lenses', 'normal': {'astigmatic':{'yes':
{'prescript':{'hyper':{'age':{'pre':'no lenses', 'presbyopic':
'no lenses', 'young':'hard'}}, 'myope':'hard'}}, 'no':{'age':{'pre':
'soft', 'presbyopic':{'prescript': {'hyper':'soft', 'myope':
'no lenses'}}, 'young':'soft'}}}}}
  • 5, 测试算法: 编写测试函数验证决策树可以正确分类给定的数据实例。

  • 6, 使用算法: 存储树的数据结构,以便下次使用时无需重新构造树。

Programing

Sklearn

#Import Library
#Import other necessary libraries like pandas, numpy...
from sklearn import tree
 
#Assumed you have, X (predictor) and Y (target) for training data set and x_test(predictor) of test_dataset
# Create tree object 
model = tree.DecisionTreeClassifier(criterion='gini') # for classification, here you can change the algorithm as gini or entropy (information gain) by default it is gini  
 
# model = tree.DecisionTreeRegressor() for regression
# Train the model using the training sets and check score
model.fit(X, y)
model.score(X, y)
 
#Predict Output
predicted= model.predict(x_test)