LSA Latent semantic analysis 潜在语义分析
其核心思想是把我们所拥有的文档-术语矩阵分解成相互独立的文档-主题矩阵和主题-术语矩阵,其主要方法是使用SVD奇异值分解来进行
#### Step.1 生成文档-术语模型 如果在词汇表中给出 m 个文档和 n 个单词,我们可以构造一个 m×n 的矩阵 A,其中每行代表一个文档,每列代表一个单词。在 LSA 的最简单版本中,每一个条目可以简单地是第 j 个单词在第 i 个文档中出现次数的原始计数。然而,在实际操作中,原始计数的效果不是很好,因为它们无法考虑文档中每个词的权重。因此,LSA 模型通常用 tf-idf 得分代替文档-术语矩阵中的原始计数。tf-idf,即词频-逆文本频率指数,为文档 i 中的术语 j 分配了相应的权重
- 术语出现在文档中的频率越高,则其权重越大;
- 同时,术语在语料库中出现的频率越低,其权重越大。
Step.2 SVD降维
维可以使用截断 SVD 来执行。SVD,即奇异值分解,是线性代数中的一种技术。该技术将任意矩阵 M 分解为三个独立矩阵的乘积:M=USV,其中 S 是矩阵 M 奇异值的对角矩阵。很大程度上,截断 SVD 的降维方式是:选择奇异值中最大的 t 个数,且只保留矩阵 U 和 V 的前 t 列。在这种情况下,t 是一个超参数,我们可以根据想要查找的主题数量进行选择和调整。
- U∈ℝ^(m⨉t)是我们的文档-主题矩阵
- V∈ℝ^(n⨉t)则成为我们的术语-主题矩阵 。在矩阵 U 和 V 中,每一列对应于我们 t 个主题当中的一个。在 U 中,行表示按主题表达的文档向量;在 V 中,行代表按主题表达的术语向量。
Step.3 评估
用余弦相似度等度量来评估以下指标: 不同文档的相似度 不同单词的相似度 术语(或「queries」)与文档的相似度(当我们想要检索与查询最相关的段落,即进行信息检索时,这一点将非常有用)
余弦相似度 将向量根据坐标值,绘制到向量空间中。如最常见的二维空间。求得他们的夹角,并得出夹角对应的余弦值,此余弦值就可以用来表征,这两个向量的相似性。夹角越小,余弦值越接近于1,它们的方向更加吻合,则越相似。
每一个红色的点,都表示一个词,每一个蓝色的点,都表示一篇文档,这样我们可以对这些词和文档进行聚类,比如说 stock 和 market 可以放在一类,因为他们老是出现在一起,real 和 estate 可以放在一类,dads,guide 这种词就看起来有点孤立了,我们就不对他们进行合并了。按这样聚类出现的效果,可以提取文档集合中的近义词
总结
- LSA 方法快速且高效
- 缺乏可解释的嵌入(我们并不知道主题是什么,其成分可能积极或消极,这一点是随机的)
- 需要大量的文件和词汇来获得准确的结果
- 表征效率低